
LAB 05

IEEE Micromouse Spring 2018

Lab 5: Controls I

Introduction
Last time, we learned how to determine how fast our mouse is driving and how fast it’s turning.
This week, we’ll use these values to make our mouse drive straight!



LAB 05

Setup
Start by picking up a battery and downloading the skeleton code, which includes all of the
functionality we’ve implemented in our previous labs.

The directory structure should look like:
mouse/

mouse.ino
mouse_helpers.ino
pins.h

By default, the code will apply 20% power to each motor:

////////////////////////////////////
// Your changes should start here //
////////////////////////////////////
float left_power = 0.2;
float right_power = 0.2;

applyPowerLeft(left_power);
applyPowerRight(right_power);

applyPowerLeft() and applyPowerRight() should turn their corresponding motors at full
power forwards when power is 1.0 and full power backwards when power is -1.0.

https://drive.google.com/open?id=13-7QNES7HQCKIQGdt-RQRamPRsSkppsI


LAB 05

Checkoff #1
1. Run the skeleton code.

a. Verify that each wheel is spinning in the forwards direction.
i. Flip the INVERT_MOTOR_LEFT and INVERT_MOTOR_RIGHT flags if

needed
b. Verify that the measured linear velocity is positive.

i. Flip the INVERT_ENCODER_LEFT and INVERT_ENCODER_RIGHT
flags if needed



LAB 05

Driving Straight
The current driving implementation in the skeleton code is an example of open loop control,
which uses knowledge of the system (our mouse) to estimate the required control input (motor
voltage). We know that applying the same voltage to both motors will make them spin in the
same direction at roughly the same speed.

This is great! That is, of course, under the assumption that we are in a vacuum with no air
resistance. And the mouse is perfectly balanced. And the ground is perfectly flat, with no
defects. And our motors are exactly the same, to the atom.

Unfortunately, encasing the room in a vacuum violates the competition specs, so we will have to
find some other way to deal with these problems.

In reality, applying the same voltage to each motor will not give us identical motor
behaviors. The mouse will veer to one side.

To fix this, we can use something called closed-loop control or feedback control, which
utilizes readings from the encoders to correct the amount of power we apply to the motors.

The encoder readings can tell us how far we are from driving straight, and the feedback
control￼ corrects the error by, for instance, applying extra power to the slower motor and
reducing power to the fast one.



LAB 05

Proportional Control for Driving Straight
One common way to do feedback control is with a proportional (P) controller. P controllers try to
minimize an error — the difference between a measured value (input) and its desired value
(setpoint).

This is accomplished by increasing a correction power proportionally to the error: the higher our
error, the more power we should apply to correct for it.

Let’s try driving forward at 20% power again.
This time, however, we’ll apply a proportional correction value u as shown:

...where Kp is a gain that scales our corrective power. There are ways to calculate the right
value of Kp, but guessing and checking also works.

Checkoff #2
1. If we use our mouse’s angular velocity as the input to a control loop that tries to make

our mouse drive straight, what should the setpoint be?
2. If the error is an angular velocity and u(t) is a duty cycle, what units is Kp in?
3. If we want to our applied correction power u(t) to be maximized (ie 1.0) when the error

is 2 radians/second, what should Kp be?
4. Implement the angular velocity P controller described above.
5. Try a few different Kp values. Some values to start with: 0.1, 0.5, 5

a. What do you think (or see) happens when Kp is too low? Why?
b. What do you think (or see) happens when Kp is too high? Why?
c. What seems to be a good value for Kp?

6. Plot your angular velocity error. Does it converge to zero?



LAB 05

Linear Velocity Control
Instead of blindly adding 0.2 to our wheel duty cycles to command our mouse to drive forward,
we can add a controller for our linear velocity as well:

This allows our mouse to drive forwards and backwards as well as stop. Being able to control
the speed of our mouse is really useful. Just as imbalances in the motors can prevent our
mouse from driving straight, they can also cause our mouse to drift when turning in place.

Checkoff #3
1. What should the input and setpoint be for our linear velocity controller?
2. If the error is a linear velocity and u(t) is a duty cycle, what units is Kp in?
3. If we want to our applied correction power u(t) to be maximized (ie 1.0) when the error

is 140 mm/second, what should Kp be?
4. Implement the linear velocity P controller described above.

a. We recommend that you start by disabling the angular velocity control -- get
them both working separately before combining them.

5. Try a few different Kp values. Some values to start with: 0.001, 0.01, 0.1
a. What do you think (or see) happens when Kp is too low? Why?
b. What do you think (or see) happens when Kp is too high? Why?
c. What seems to be a good value for Kp?

6. Plot your linear velocity error. Does it converge to zero?



LAB 05

(Bonus) Integral Control
Recall our implementation of a proportional controller:

Proportional control works better than nothing for making our mouse drive straight, but it doesn’t
account for long-term drift. Even if our mouse manages to correct most of the error every
timestep, there’s still a little bit of uncorrected error that builds up. What if we could have our
mouse keep track of the total error so far?

The integral sums up the total error since we started the controller. As the error builds up, the
controller will apply a stronger correction to u(t) to get our mouse back on track. This is known
as a proportional-integral (PI) controller.

Checkoff #4
1. Add an integral term to the your angular velocity controller.

a. We recommend doing so with the Arduino PID library.
b. Does your error converge to zero?

2. Add an integral term to your linear velocity controller.
a. Does your error converge to zero?

https://playground.arduino.cc/Code/PIDLibrary

